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SINTERING AND CREEP BEHAVIOR OF PLASMA-SPRAYED
ZIRCONIA AND HAFNIA BASED THERMAL BARRIER COATINGS

Dongming Zhut and Robert A. Miller

T Ohio Aerospace Institute
National Aeronautics and Space Administration
Lewis Research Center, Cleveland, OH 44135

ABSTRACT

The sintering and creep plasma-sprayed ceramic thermal barrier coatings under high
temperature conditions areomplex phenomena. Changes in thermomechanical and
thermophysical properties andtime stress response diiese coatingystems as &esult of the
sintering and creep processes are detrimental to coating thermal fatigue resistance and performance.
In this paperthe sintering characteristics of Z¥F8wt%Y203, ZrOz-25wt%CeQ-2.5wt%Y-203,
ZrO2-6Ww%NiO-9wWt% Y203, ZrOx-6wt%Se03-2wt%Y203 and HfQ-27wt%Y>03 coating
materials were investigatagsing dilatometry. lwas foundthat the HfQ-Y>0O3 and baseline
ZrO2-Y 203 exhibitedthe best sintering resistance, whilee NiO-doped ZrQ-Y 203 showed the
highest shrinkage strain rates during the tests. Higher shrinkage strain theesadting materials
were also observed whehe specimens weréested inAr+5%H, as compared to iair. This
phenomenon was attributed to an enhanced metal cation intedstitialon mechanism under the
reducing conditions. It is proposdbdat increased chemical stability of coatingaterials will
improve the material sintering resistance.

I. INTRODUCTION
Plasma-sprayederamic thermal barrier coatings are being develdpedadvanced gas
turbine and diesel engine applicationsirgorove engine reliabilityand efficiency. Since these
coatings are experiencing severe thermomechanical cycling during engine operation, it is especially
challenging to develop coatirgystemswith high reliability and durability. In particular, ceramic

Paper presented ifhe 25th International Conference on Metallurgical Coatings and Thin FFiBaa Diego,
California, April 27—May 1, 1998. To be published in Surface and Coatings Technology.
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coating sintering and creep at high temperaameamong the most important issues for the
development of advanced thermal barrier coatinghiaadeen recognized bmany investigators

[-10] | The ceramic sintering and creephah temperaturean result in coatinghrinkage and

through-thickness cracking during cooljrtgereby furthelaccelerating the coating failupgocess.
Sintering-segmentation-enhanced delamination can bémaortant failure mechanism for a

thermal barrier coating system, due to st@swcentratiorfrom the through-thickness cracks, and
increased coating elastic modulus fridme sintering densificatioprocessThe increase in coating
thermal conductivity is also detrimental to coatipgrformance. Research efforts involving
various techniques have also beeade incharacterizing the ceramic coating sintering arekp

behavior at high temperature and under temperature gradients simulating those encountered in the

engine[l' 2, 7,11-13].

The sintering and creep gflasma-sprayed, porowsnd microcracked ceramic thermal

barrier coatings are complex phenomena. The early work by Firegtah& 3 indicated that the
ceramic creep appeared to be a thermally actiyateckss, withithe ceramic splat-sliding being an
important creemleformation mechanism. Momecently, it has been reportedhat the ceramic

thermal barrier coatings can sinter and creep significamiger compressive stresgates at

1, 13, 14]

relatively low temperature[é . The "creep" oplasma-sprayed Zr§8wt%Y203 at room

temperature has also been observed at a tensile stress of 7#MPamechanism-based model
has beenproposed to describthe densification andleformation occurring in thermal barrier
coatings at temperature by taking into account the thermallgtagsiactivateddiffusion, and the
mechanical compactingrocessesllg’] . The dopants inthe ceramic coatings can significantly
modify the pointdefect andnicrostructures inhe bulk, at splat-grain boundaries and microcrack
surfaces othe materials, thereby can significantly affect these sintering and preepsses. A
betterunderstanding ofhe dopant effects will help to develop future advanced, sintering/creep
resistant "superalloy-type" ceramic coatings.

The purpose of this paper is to investigate sintering kinetics of sewe@bia and hafnia
based ceramic coating materials. The ceramic materials investigated include: {/&wA%Y 203,
a NASA-Lewis Research Center referender baseline) material;(b) ZrOy-25wt%CeQ-
2.5wt%Y>03, a commerciallyavailable coating material develop&m hot corrosionresistance;

(c) HfO2-27wWt%Y-03, a potential new coating material developetlASA for high temperature
stability 1161 : (d) ZrOp-6wt%NiO-9wt%Y>03, a NiO-doped Zr@Y,O3 coating material

reported tosuppressghe tetragonal-monocliniphase transformatiot”? ; (e) ZrOy-6wt%Se0s-

NASA/TM—1998-208406 2



2Wt%Y,03, developed for improved hot corrosion resistdi@e The coating sintering anzteep
mechanismsand dopant effect on coating sintering rates diseussed based ogxperimental
observations and possible defect reactions.

II. EXPERIMENTAL MATERIALS AND METHODS

The five ceramic coating materialgnentioned above, ZrEBwt%Y,03, ZrOo-
25wt%CeQ-2.5Wt%Y203, ZrOx-6wt%NiO-9wt%Yo03, ZrOr-6wt%Se03-2wt%Y-03 and
HfO2-27wt%Y>03, were chosen for this studyhe actuacompositions othese materials were
close to the their nominal compositions. Each of the above materials was prepared by sintering and
crushing except for Zr@25CeQ-2.5wt%Y>03 which was spraylried andplasma spheroidized.
A single set of standard plasma-spray parameters was used for each material. The powders with an
average particle size of g0n of these coating materials weiest plasma-sprayed onto 3 mm

diameter graphite cylindrical bars, using the plasma spray conditions described pré’\ﬂb.uﬂye
coating thickness was aboi/f6 mm,and porositywas about10%. The graphitebars werehen
slowly burnt off at 600C for 6 hours in durnace in air. Thénollow ceramic cylinders were cut
into 25.4 mm dilatometer specimens.

Ceramic sintering experiments were carried outain and in Ar+5%H, within the
temperature range of 900 to 14GQ using a UNITHERM™ high temperatuddatometersystem
shown in Figure 1Since thepush rod inthe dilatometer exerts a certaamount of force
(measured at approximately 450g using a spdegce) on thespecimen, ainiaxial stress of

Ceramic coating material 0

Y ~ Water outlet
) —»Gas outlet
Push rods )
[(o) Water inlet
(- —— Gas inlet
N \\ 0
\

174

Fig. 1 Schematic diagram showing the ceramic sintering experiment

using dilatomentry.
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approximately 0.5 MPa was acting on the specimen ddniegentire sintering test. Therefore, this
experiment caralso be considered a low constant-streeep testfor the ceramic materials.

During the sintering/creep experiments at various test temperatures, all specimens were heated in at
rate of 3C/minute and held at the given test temperatorel5 hours,and then cooledown at a

rate of 3C/minute to room temperature. Specimen shrinkage during the heating/cooling cycles was
continuously recorded in a computrstem.Surface morphology changes tbe specimens due

to the sinteringprocess were examined using a scanretegtron microscope (SEM). Phase
structures ofthe specimens before arafter dilatometer sinteringests were also examined by

X-ray diffractometry with CuK, radiation.

lll. EXPERIMENTAL RESULTS

Figure 2 showghermal expansion (shrinkage) results tfeg coating materialduring the
sintering experiments at various temperatures measuredebgilatometry technique. Sintering
shrinkage were observed fall materials wherthe specimens werdeld at temperaturéor 15
hours.The shrinkage strains increased with increasing temperatutanlbeseenthat the HfQ-
27wt% Y-03 showedthe best sintering resistance. In contrast, €e@¢03, and NiO-doped
ZrO2-Y 203 materials exhibit significant sintering shrinkage. Betbe temperature of 960G, no
significant shrinkage strains were detectedtlier given testime. Figure 3 illustratethe sintering
shrinkage strains occurring at the isothermal sintering stages as a function of temperature.

The sintering rates of the ceramic materials atisothermal stages change with time,
especially at the early sintering time period. gk®own in examples in Figure(d) and (b)faster
shrinkage rates were observed initially, however, relatively constant rates were obselwegefor
sintering times. At 140@ as shown in Figure 4 (dhe "steady state" sintering ratés ZrOo-
Y203, Zr0r-Ce-Y203, Zr0r»-S03-Y203, Zr0r-NiO-Y203, and HfQ-Y203 are
2.6x1078/sec., 3.8x1078/sec. 4.2x1078/sec., 8.5%1078 /sec. and 6.4x107% / sec., respectively.
Figure 4 (d) shows that for ZgENIO-Y 203 the secondycle resulted in further shrinkage of the
specimen at 120C.

Figure 5 showghe sinteringshrinkage kinetics oplasma-sprayed Zr&8wt%Y,03 at
1200°C in air and inAr+5%Ho. It can beseenthatwhenthe specimen wasested in a reducing
atmosphere, a faster sintering shrinkagte was observed. Iraddition, the ceramic coating
material turned black after this ArpHreatment. Increased sintering rates and darkened color were
observed forall other materials undehe reducedxygen partial pressurecondition. This may
imply that the more defective structure of the materials due to Assthtering would increase the

NASA/TM—1998-208406 4
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dilatometry sintering experiments at various temperatures. (a)2-Zn@oY203;
(b) ZrOp-25wt%Ce-2.5wt%Y203; () ZrOx-6wt%Se03-2wt%Y203; (d) ZrOp-
6Wt%NIO-9wt%Y>03; (e) HfOp-27wWt%Y203.
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Fig. 3 Total sintering shrinkage strains for the coating materials at the

15 hour isothermal sintering stages as a function of temperature.

minority defect transport especially at the internal surfaces and grain boundaries, thus resulting in a
faster sintering rate.

Figure 6 illustrates some examples of the X-défraction spectrdor ZrOp-Y 203, ZrO,-
Ce®-Y 203, HfO2-Y 203 and ZrQ-So03-Y 203 after 15 hours sintering at 12@in air. From
X-ray diffraction experiments, it was found that the baselineoZB®t%Y,03 primarily consisted
of tetragonalt phaseThe CeQ-doped Zr®-Y 03 also showegignificantamount oft phase,
however, the possibility that the culiigohase might also be increased as compar#tetbaseline
material requires further study. Duetke high concentration ofttria dopant, HfQ-27wt%Y>03
had a fully stabilized cubic phase. Nappreciable monocliniphase was observed tinese three
materials. Heat treatmentelated to the sinteringxperiments under various temperature and
oxygen pressure conditions did not measurably alter the phase structures of these materials. The as-
sprayed Zr@-So03-Y 203 materialshowedtetragonalt phase and an increasathount of the
monoclinic m phase.The monoclinicphase inthe SeO3z-doped materialsncreased after the

sintering tests.
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Fig. 5 Sintering shrinkage kinetics of plasma-sprayed-Bu@%Y,03 at
1200C in air and in Ar+5%Hl.

The NiO-doped Zr@Y >03 showed more complex phase structures. As shown in Figure
6, The majority phase in ZpENiO-Y 203 wasthe cubicc phase, instead aétragonaphase in

the baseline material. However, the monoclim@hase was also present in this mateBatause

of the limited solubility ofNiO in ZrO,-Y 203 (about 3mol% at 1600C 271 ), NiO phase was
observed in the as-sprayed and air-sintered specimens. In the sintéted specimens, however,
a Ni phase was present because of the reduction of NiO.

Surface microstructure changes were also obseftedthe sinteringgxperimentsCertain
regions showed moraoticeable sintering densification and grgiowth as compared tother
regions, indicating there were some heterogeneities inliberved sintering phenomena. Figure 7
shows micrographs of ceramic surfaceshef ZrG-8wt%Y203 coating material before aradter
the dilatometry sintering d&20CC. It can beseenthat sintering which occurred could result in
microcrack healing and material densification, accompanying with substantial ggoaith in
some regions.

NASA/TM—1998-208406 8
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Fig. 6 X-raydiffraction spectra of thplasma-sprayed ceramipating materials. (a) Diffraction
spectra of Zr@Y 03, ZrO-Ce-Y 203, ZrOx-Sp03-Y203 and HfQ-Y,03 after
1200°C sintering inair; (b) Diffraction spectra of Zr@-NiO-Y 203 underthe as-sprayed
condition, and after 120Q sintering in air and 120Q sintering in Ar+5%H.
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(b)
Fig. 7 Surface micrographs of the Z8wt%Y,03 ceramic

coating material before and after the dilatometry sintering
at 1200C for 15 hours. (a) Before the sintering test;

(b) After the sintering test.

V. DISCUSSION

The sintering andow-stress creep characteristics of the ceramic coating materials,

determined by the dilatometer technique, similar to the creep behavior gblasma-sprayed

coatings obtainedrom high temperature mechanical cretgsts ' 12 2 and the laser

NASA/TM—1998-208406 10



sintering/creep test®l. The fast initial creep rateand low creep activation energy have been
attributed to mechanical sliding, fast surface and goaundary diffusion, and temperature and

stress gradient enhanced transport in the porous and weak ceramic éjcﬁl\tilﬁg'gure 8illustrates
the creep rates of thasma-sprayed Zr$28wt%Y,03 as a function oktressand temperature

determined by the laser sintering techni[}ﬁ]elt can be seen that with higher compressivesses

acting on the coating, bong primary creep stage and substantial sintering/creep rates can be
observed at much lower temperaturesthimhigh temperature, lowtresssintering/creep tests by

the dilatometer technique, mechanical slideromes less predominant, anchearly "steady-

state" creep region has been reached in a relatively short period of time. Diffusion-related processes
become more important mechanisms thue low stresssintering and creepleformation. The

observed grairgrowth phenomena also suggéise complex diffusion occurring during the
dilatometer sintering test.

10°® ‘
) Stress -
50 MPa |
6 107 \ —— -100 MPa -
o N e 200 MPa
S N e ]
g r N — — 1200
a __E
9 jlooo’c
© 109
1] socrC
1010 7 A N S R B
0.0 20.0 40.0 60.0 80.0 100.0

Time, hours

Fig. 8 The coating creep rates of plasma-sprayeg&n@®o0Y>03, determined

by laser high heat flux sintering/creep technique, as a function of stress
and temperature.
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Creep deformation of ceramic coating materials requires diffusion of the cations and anions
in these materials. The creep rate in ceramics is therefore determined by the diffusion of the slowest
species, diffusing alontihe fastest path. In yttria-stabilized zirconia, thajority defecttypes are
oxygenvacancies angttrium aliovalentdopants at normatation sites. The possible minority
defects are zirconia interstitialdyconium vacancies, and yttrium interstitials, @hd zirconium
and yttrium cation transport is confirmed to bthe slowest process iyttria-stabilized single

crystalsi?!! . The defect reactions in the yttria-stabilized zirconia can be written according to

Kroger-Vink notatior?? as

Y,03 = 2Y, +308 +V§ (1)
05 =Vd+2e +%Oz(g) 2)
(for majority defects)
and
206 + 2y, = 21" 4e +0,(g) (3)
20,(@) =V + 41" (4)

(for minority defects)

In the extrinsic region, themajority defect oxygen vacancy concentratior{vg,]] is
determined by the dopant yttria concentra{i\ﬁ'ﬂ], which follows the electroneutrality condition
[Y'Zr] = 2[vg]] . (5)
At lower oxygenpartial pressures irthe intrinsic regionwherethe electron conductivity
becomes important, oxygen vacancies can be further introduced according to Equation (2), that is

0 AH o0
=y V,
[Vgﬂ]n2 = K\/E_)]]pO 2 expDD— = E (6)

wheren is electron concentratiorhgvgﬂ IS reaction constant)\H,  is the enthalpy oformation of

Vo
oxygen vacanciesR and T aregas constant and temperatuespectively. Metal interstitials can
be an importantefect type in theoxygen deficient oxide®! | and thezirconium interstitial
concentration can be obtained from Equation (3)

O AHZr,mmD

4 _ -1 i
[Zrimm]n _KZrF]Epoz exp%— T E (7)

where K, m is a constantAH,, m is the enthalpy oformation of zirconiuminterstitials. In this

NASA/TM—1998-208406 12



intrinsic region, the electroneutrality can be expressed as
n= Z[V(D)]] + 4[ Zrimm]. (8)
By combining Equations (6)-(8), the oxygen vacancy and zirdotesstitial concentrations can be
written as
[l AHVmD

[Vg]] §<Vm]/4D pO:ZL/BeXpD_ 3RTE (9a)

0 3AH m 4AHVm]D

m _ 4/30 .-1/3
[Zr,[[”ﬂl]—%ZrFm/(ZKvﬂ) Po, exp[r 3RT E (9b)

(when [v(“)]] >> [Zrim"ﬂ])

o — 2/50 ~1/10 Vo 1|
V8] = chyg (4K ™ °cpG O eeprr 0 (10a)

5RT g
[Zrimm] = §<Zrim/ 25681/5 p02 expé— ASHRZ’TME (10Db)
(when [VP)]] << [Zrim”“])

In the very high oxygen pressure region whére zirconium vacanciesire predominant,

the electroneutrality condition can be written as
p=4Vz| (11)
where p is electron hole concentration. The zirconium vacancy concentration can be ofstaimed
Equation (4) as
D’U ] AH
m] 1/10
[Var|= ok 12561 o) P 5RT

T E (12)

where Ky is a constantpH, - is the enthalpy oformation of zirconiunmvacancies. AKroger-

Zr Zr

Vink diagram is constructed based on these defect reactiorisgaradions (5), (9), (10) and (12),
as shown in Figure 9.

The increased sintering rate of ZF8wt% Y203 at the reducind\r+5%H, atmosphere is
probablyrelated to the defect structure change in the oxtdem the proposed Kroger-Vink
diagram shown in Figure 9, dan beseenthat both concentrations of oxygewvacancies and
zirconia interstitials increase with reducing partial pressure of oxygen, especiallylow thgygen
activity region. At extremely low oxygepressuresthe metal cation interstitials can eveecome
the dominant defect type. Therefore, it is possible that the highly defective oxide structures under

NASA/TM—1998-208406 13
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Fig. 9 Proposed Pseudo-Kréger-Vink diagram illustrating the possible
majority and minority defects in ZE2Bwt%Y203.

low oxygen pressures facilitates the metal cation interstitial formation, thus resulting in faster metal

cation diffusion and the increased sintering rate. Thoretai. ! have alsmbservedenhanced
cerium migration and segregation in the ZZwt%CeQ-2.5wt%Y>03 material underelatively
moderate reducing conditions, further confirmthg increased catiomobility in more oxygen-
deficient oxide under the low oxygen activity conditions.

Since the ceramic sintering requires the transport of the minority cations, the stability of the
ceramic materials (both dopants and base materials) will have influertbe simtering behavior.
The presenstudy has shownhat there is a close relationship between the oxide chemical and
phase stability and the sintering rate. Halfnia-based oxides have higher chemical stability, and lower
oxygen partial pressures fotthe transition of ionic conductivity to electronic conductivity, as
compared to zirconia-based oxides, therefore it is swsprisedthat the HfQ-27wt%Y>03
exhibited thelowest sintering rates. Othe otherhand, the CeQ-doped ZrQ exhibited large

electron contributions at even moderate temperaturesogygen activities [*>.. As shown in

Figure 9, the increased region of electron conductimies an extended meteation interstitial
NASA/TM—1998-208406 14



region, in whichthe cation interstitial concentration is increasath decreasing oxygepartial
pressure, and thus resulting in possidnanced metal catiadiffusion with reducing oxygen
activity. Insufficient doping, as possibly occurred for 28g-doped ZrQ-Y 03, will have a
similar effect on the metal catiodiffusion. Forthe NiO-doped ZrQ-Y 203, the observed high
sintering rates may also be related\i® segregation at the graboundaries, which magct as a
sintering agent. At lower oxygen partial pressures, the NiO reduction to metallic Ni, as observed in
this experimentgcan further enhance the sinteripgpcess. It is suggestedat the chemical and
phase stability of botlhe base oxides and dopant oxidescitical to the sintering andcreep
behavior of the ceramic materials.

V. CONCLUSIONS

1. Sintering shrinkage strains were observedhatisothermal stagdor all ceramic coating
materials tested in the dilatometer sinteraxgperimentsThe HfO-27wt%Y,>03 and baseline
ZrO»2-8wt% Y203 exhibited the best sintering resistance, and NiO-dope@-Xrd3; showed
the highest shrinkage strain rates during the tests.

2. The highershrinkage strain rates dfie coating materialerere observed fothe specimens
tested inAr+5%H, as compared to thosested in air. Thiphenomenon waattributed to a
proposed enhanced metal cation interstitial diffusion mechanism under the reducing conditions.

3. There was a close relationship between the observed sintering behavior and chemical and phase
stability of the coating materials. Increased chemical stability of base oxides and depamgs
to improve materials phasstability at high temperature, and sintering/creep resistance.
Insufficient doping and dopant-segregation-induced depletion fadllitate the sintering
process.
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